{ "id": "2006.05320", "version": "v1", "published": "2020-06-09T14:55:12.000Z", "updated": "2020-06-09T14:55:12.000Z", "title": "Gaussian concentration and uniqueness of equilibrium states in lattice systems", "authors": [ "J. -R. Chazottes", "J. Moles", "F. Redig", "E. Ugalde" ], "comment": "23 pages. Preprint", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider equilibrium states (that is, shift-invariant Gibbs measures) on the configuration space $S^{\\mathbb{Z}^d}$ where $d\\geq 1$ and $S$ is a finite set. We prove that if an equilibrium state for a shift-invariant uniformly summable potential satisfies a Gaussian concentration bound, then it is unique. Equivalently, if there exist several equilibrium states for a potential, none of them can satisfy such a bound.", "revisions": [ { "version": "v1", "updated": "2020-06-09T14:55:12.000Z" } ], "analyses": { "keywords": [ "equilibrium state", "lattice systems", "uniqueness", "shift-invariant gibbs measures", "shift-invariant uniformly summable potential satisfies" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }