{ "id": "2006.05271", "version": "v1", "published": "2020-06-05T19:09:42.000Z", "updated": "2020-06-05T19:09:42.000Z", "title": "Tensor product decompositions for cohomologies of Bott-Samelson varieties", "authors": [ "Vladimir Shchigolev" ], "comment": "arXiv admin note: text overlap with arXiv:2006.00551", "categories": [ "math.RT", "math.AG", "math.AT" ], "abstract": "Let $T$ be a maximal torus of a semisimple complex algebraic group, $\\mathrm{BS}(s)$ be the Bott-Samelson variety for a sequence of simple reflections $s$ and $\\mathrm{BS}(s)^T$ be the set of $T$-fixed points of $\\mathrm{BS}(s)$. We prove the tensor product decompositions for the image of the restriction $H^\\bullet_T(\\mathrm{BS}(s),k)\\to H_T^\\bullet(X,k)$, where $X\\subset\\mathrm{BS}(s)^T$ is defined by some special not overlapping equations $\\gamma_i\\gamma_{i+1}\\cdots\\gamma_j=w_{i,j}$ with right-hand sides belonging to the Weyl group.", "revisions": [ { "version": "v1", "updated": "2020-06-05T19:09:42.000Z" } ], "analyses": { "subjects": [ "55N91" ], "keywords": [ "tensor product decompositions", "bott-samelson variety", "semisimple complex algebraic group", "cohomologies", "right-hand sides" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }