{ "id": "2006.04840", "version": "v1", "published": "2020-06-08T18:04:16.000Z", "updated": "2020-06-08T18:04:16.000Z", "title": "Random derangements and the Ewens Sampling Formula", "authors": [ "Poly H. da Silva", "Arash Jamshidpey", "Simon Tavaré" ], "comment": "16 pages, 9 tables", "categories": [ "math.PR", "stat.ME" ], "abstract": "We study derangements of $\\{1,2,\\ldots,n\\}$ under the Ewens distribution with parameter $\\theta$. We give the moments and marginal distributions of the cycle counts, the number of cycles, and asymptotic distributions for large $n$. We develop a $\\{0,1\\}$-valued non-homogeneous Markov chain with the property that the counts of lengths of spacings between the 1s have the derangement distribution. This chain, an analog of the so-called Feller Coupling, provides a simple way to simulate derangements in time independent of $\\theta$ for a given $n$ and linear in the size of the derangement.", "revisions": [ { "version": "v1", "updated": "2020-06-08T18:04:16.000Z" } ], "analyses": { "subjects": [ "60C05", "60J10", "65C05", "65C40" ], "keywords": [ "ewens sampling formula", "random derangements", "marginal distributions", "study derangements", "asymptotic distributions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }