{ "id": "2006.04783", "version": "v1", "published": "2020-06-08T17:56:05.000Z", "updated": "2020-06-08T17:56:05.000Z", "title": "Distinguishing endpoint sets from Erdős space", "authors": [ "David S. Lipham" ], "comment": "8 pages, 2 figures", "categories": [ "math.DS", "math.GN" ], "abstract": "We show that the set of all escaping endpoints of the Julia set of $\\exp(z)-1$ is not homeomorphic to $\\mathbb Q \\times X$ for any space $X$. In particular, it is not homeomorphic to Erd\\H{o}s space $\\mathfrak E$. Our proof demonstrates that the complement of the escaping endpoint set in $\\mathbb C$ is path-connected.", "revisions": [ { "version": "v1", "updated": "2020-06-08T17:56:05.000Z" } ], "analyses": { "subjects": [ "37F10", "30D05", "54F45" ], "keywords": [ "distinguishing endpoint sets", "erdős space", "homeomorphic", "escaping endpoint set" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }