{ "id": "2006.04346", "version": "v1", "published": "2020-06-08T04:08:00.000Z", "updated": "2020-06-08T04:08:00.000Z", "title": "Bilinear Hilbert Transforms and (Sub)Bilinear Maximal Functions along Convex Curves", "authors": [ "Junfeng Li", "Haixia Yu" ], "categories": [ "math.CA" ], "abstract": "In this paper, we determine the $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$H_{\\gamma}(f,g)(x):=\\mathrm{p.\\,v.}\\int_{-\\infty}^{\\infty}f(x-t)g(x-\\gamma(t)) \\,\\frac{\\textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{r}$, and $r>\\frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(\\mathbb{R})\\times L^q(\\mathbb{R})\\rightarrow L^r(\\mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{\\gamma}(f,g)$ along a convex curve $\\gamma$ $$M_{\\gamma}(f,g)(x):=\\sup_{\\varepsilon>0}\\frac{1}{2\\varepsilon}\\int_{-\\varepsilon}^{\\varepsilon}|f(x-t)g(x-\\gamma(t))| \\,\\textrm{d}t.$$", "revisions": [ { "version": "v1", "updated": "2020-06-08T04:08:00.000Z" } ], "analyses": { "keywords": [ "bilinear maximal function", "bilinear hilbert transform", "convex curve", "boundedness property holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }