{ "id": "2006.02410", "version": "v1", "published": "2020-06-03T17:36:47.000Z", "updated": "2020-06-03T17:36:47.000Z", "title": "On a $p(\\cdot)$-biharmonic problem of Kirchhoff type involving critical growth", "authors": [ "Nguyen Thanh Chung", "Ky Ho" ], "categories": [ "math.AP" ], "abstract": "We establish a concentration-compactness principle for the Sobolev space $W^{2,p(\\cdot)}(\\Omega)\\cap W_0^{1,p(\\cdot)}(\\Omega)$ that is a tool for overcoming the lack of compactness of the critical Sobolev imbedding. Using this result we obtain several existence and multiplicity results for a class of Kirchhoff type problems involving $p(\\cdot)$-biharmonic operator and critical growth.", "revisions": [ { "version": "v1", "updated": "2020-06-03T17:36:47.000Z" } ], "analyses": { "subjects": [ "35B33", "35J20", "35J60", "35G30", "46E35", "49J35" ], "keywords": [ "critical growth", "biharmonic problem", "kirchhoff type problems", "sobolev space", "biharmonic operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }