{ "id": "2006.02015", "version": "v1", "published": "2020-06-03T02:36:22.000Z", "updated": "2020-06-03T02:36:22.000Z", "title": "Coloring $(P_5, \\text{gem})$-free graphs with $Δ-1$ colors", "authors": [ "Daniel W. Cranston", "Hudson Lafayette", "Landon Rabern" ], "comment": "8 pages, 6 figures", "categories": [ "math.CO" ], "abstract": "The Borodin-Kostochka Conjecture states that for a graph $G$, if $\\Delta(G) \\geq 9$ and $\\omega(G) \\leq \\Delta(G)-1$, then $\\chi(G)\\leq\\Delta(G) -1$. We prove the Borodin-Kostochka Conjecture for $(P_5, \\text{gem})$-free graphs, i.e., graphs with no induced $P_5$ and no induced $K_1\\vee P_4$.", "revisions": [ { "version": "v1", "updated": "2020-06-03T02:36:22.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "free graphs", "borodin-kostochka conjecture states" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }