{ "id": "2006.01288", "version": "v1", "published": "2020-06-01T21:54:11.000Z", "updated": "2020-06-01T21:54:11.000Z", "title": "E-polynomials of character varieties for real curves", "authors": [ "Thomas John Baird", "Michael Lennox Wong" ], "comment": "37 pages, comments welcome", "categories": [ "math.AG", "math.RT", "math.SG" ], "abstract": "We calculate the E-polynomial for a class of the (complex) character varieties $\\mathcal{M}_n^{\\tau}$ associated to a genus $g$ Riemann surface $\\Sigma$ equipped with an orientation reversing involution $\\tau$. Our formula (\\ref{GenFunctBig}) expresses the generating function $\\sum_{n=1}^{\\infty} E(\\mathcal{M}_n^{\\tau}) T^n$ as the plethystic logarithm of a product of sums indexed by Young diagrams. The proof uses point counting over finite fields, emulating \\cite{HRV}.", "revisions": [ { "version": "v1", "updated": "2020-06-01T21:54:11.000Z" } ], "analyses": { "subjects": [ "14D22" ], "keywords": [ "character varieties", "real curves", "e-polynomial", "orientation reversing involution", "finite fields" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }