{ "id": "2005.14240", "version": "v1", "published": "2020-05-28T19:03:48.000Z", "updated": "2020-05-28T19:03:48.000Z", "title": "A class of higher inductive types in Zermelo-Fraenkel set theory", "authors": [ "Andrew Swan" ], "categories": [ "math.LO" ], "abstract": "We define a class of higher inductive types that can be constructed in the category of sets under the assumptions of Zermelo-Fraenkel set theory without the axiom of choice or the existence of uncountable regular cardinals. This class includes the example of unordered trees of any arity.", "revisions": [ { "version": "v1", "updated": "2020-05-28T19:03:48.000Z" } ], "analyses": { "subjects": [ "03B38", "03E10" ], "keywords": [ "zermelo-fraenkel set theory", "higher inductive types", "uncountable regular cardinals", "assumptions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }