{ "id": "2005.13940", "version": "v1", "published": "2020-05-28T12:15:08.000Z", "updated": "2020-05-28T12:15:08.000Z", "title": "Uniformly Positive Entropy of Induced Transformations", "authors": [ "Nilson C. Bernardes Jr.", "Udayan B. Darji", "RĂ´mulo M. Vermersch" ], "comment": "8 pages", "categories": [ "math.DS" ], "abstract": "Let $(X,T)$ be a topological dynamical system consisting of a compact metric space $X$ and a continuous surjective map $T : X \\to X$. By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $(\\cM(X),\\wt{T})$ on the space of Borel probability measures endowed with the weak$^*$ topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.", "revisions": [ { "version": "v1", "updated": "2020-05-28T12:15:08.000Z" } ], "analyses": { "subjects": [ "37B40", "28A33", "60B10", "54B20" ], "keywords": [ "uniformly positive entropy", "induced transformations", "borel probability measures", "compact metric space", "local entropy theory" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }