{ "id": "2005.13484", "version": "v1", "published": "2020-05-27T16:47:11.000Z", "updated": "2020-05-27T16:47:11.000Z", "title": "The Kirillov model in families", "authors": [ "Nadir Matringe", "Gilbert Moss" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Let $F$ be a non-archimedean local field, let $k$ be an algebraically closed field of characteristic $\\ell$ different from the residual characteristic of $F$, and let $A$ be a commutative Noetherian $W(k)$-algebra, where $W(k)$ denotes the Witt vectors. Using the Rankin-Selberg functional equations and extending recent results of the second author, we show that if $V$ is an $A[\\text{GL}_n(F)]$-module of Whittaker type, then the mirabolic restriction map on its Whittaker space is injective. In the special case where $A=k=\\overline{\\mathbb{F}_{\\ell}}$ and $V$ is irreducible generic, our result in particular answers a question of Vign\\'eras from 1989.", "revisions": [ { "version": "v1", "updated": "2020-05-27T16:47:11.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70", "11F33" ], "keywords": [ "kirillov model", "non-archimedean local field", "mirabolic restriction map", "rankin-selberg functional equations", "special case" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }