{ "id": "2005.13432", "version": "v1", "published": "2020-05-27T15:42:30.000Z", "updated": "2020-05-27T15:42:30.000Z", "title": "Sum-product estimates for diagonal matrices", "authors": [ "Akshat Mudgal" ], "comment": "A revised version will appear in Bulletin of the Australian Mathematical Society. 9 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Given $d \\in \\mathbb{N}$, we establish sum-product estimates for finite, non-empty subsets of $\\mathbb{R}^d$. This is equivalent to a sum-product result for sets of diagonal matrices. In particular, let $A$ be a finite, non-empty set of $d \\times d$ diagonal matrices with real entries. Then for all $\\delta_1 < 1/3 + 5/5277$, we have \\[ |A+A| + |A\\cdot A| \\gg_{d} |A|^{1 + \\delta_{1}/d}. \\] In this setting, the above estimate quantitatively strengthens a result of Chang.", "revisions": [ { "version": "v1", "updated": "2020-05-27T15:42:30.000Z" } ], "analyses": { "subjects": [ "11B30" ], "keywords": [ "diagonal matrices", "non-empty subsets", "sum-product result", "real entries", "estimate quantitatively strengthens" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }