{ "id": "2005.12983", "version": "v1", "published": "2020-05-26T19:06:18.000Z", "updated": "2020-05-26T19:06:18.000Z", "title": "On $φ$-1-Absorbing Prime Ideals", "authors": [ "Eda Yıldız", "Ünsal Tekir", "Suat Koç" ], "comment": "10 pages. arXiv admin note: text overlap with arXiv:2005.10365", "categories": [ "math.AC" ], "abstract": "In this paper, we introduce $\\phi$-1-absorbing prime ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity $1\\neq0$ and $\\phi:\\mathcal{I}(R)\\rightarrow\\mathcal{I}(R)\\cup\\{\\emptyset\\}$ be a function where $\\mathcal{I}(R)$ is the set of all ideals of $R$. A proper ideal $I$ of $R$ is called a $\\phi$-1-absorbing prime ideal if for each nonunits $x,y,z\\in R$ with $xyz\\in I-\\phi(I)$, then either $xy\\in I$ or $z\\in I$. In addition to give many properties and characterizations of $\\phi$-1-absorbing prime ideals, we also determine rings in which every proper ideal is $\\phi$-1-absorbing prime.", "revisions": [ { "version": "v1", "updated": "2020-05-26T19:06:18.000Z" } ], "analyses": { "subjects": [ "13A15", "13C05", "54C35" ], "keywords": [ "prime ideal", "proper ideal", "determine rings", "nonzero identity" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }