{ "id": "2005.12819", "version": "v1", "published": "2020-05-26T15:54:17.000Z", "updated": "2020-05-26T15:54:17.000Z", "title": "Density of Arithmetic Representations of Function Fields", "authors": [ "Hélène Esnault", "Moritz Kerz" ], "comment": "22 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "We propose a conjecture on the density of arithmetic points in the deformation space of representations of the \\'etale fundamental group in positive characteristic. This? conjecture has applications to \\'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\\mathbb{P}^1\\setminus \\{0,1,\\infty\\}$.", "revisions": [ { "version": "v1", "updated": "2020-05-26T15:54:17.000Z" } ], "analyses": { "keywords": [ "function fields", "arithmetic representations", "etale cohomology theory", "etale fundamental group", "hard lefschetz conjecture" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }