{ "id": "2005.12646", "version": "v1", "published": "2020-05-26T11:58:21.000Z", "updated": "2020-05-26T11:58:21.000Z", "title": "Small class number fields in the family $\\mathbb{Q}(\\sqrt{9m^2+4m})$", "authors": [ "Nimish Mahapatra", "Prem Prakash Pandey", "Mahesh Ram" ], "comment": "20 pages. Comments are welcome", "categories": [ "math.NT" ], "abstract": "We study the class number one problem for real quadratic fields $\\mathbb{Q}(\\sqrt{9m^2+ 4m})$, where $m$ is an odd integer. We show that for $m \\equiv 1 \\pmod 3$ there is only one such field with class number one and only one such field with class number two.", "revisions": [ { "version": "v1", "updated": "2020-05-26T11:58:21.000Z" } ], "analyses": { "subjects": [ "11R11", "11R29" ], "keywords": [ "small class number fields", "real quadratic fields", "odd integer" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }