{ "id": "2005.12605", "version": "v1", "published": "2020-05-26T09:49:58.000Z", "updated": "2020-05-26T09:49:58.000Z", "title": "Inverse Function Theorem in Fréchet Spaces", "authors": [ "Milen Ivanov", "Nadia Zlateva" ], "categories": [ "math.FA" ], "abstract": "We consider the classical Inverse Function Theorem of Nash and Moser from the angle of some recent development by Ekeland and the authors. Geometrisation of tame estimates coupled with certain ideas coming from Variational Analysis when applied to a directionally differentiable function, produce very general surjectivity result and, if injectivity can be ensured, Inverse Function Theorem with the expected Lipschitz-like continuity of the inverse.", "revisions": [ { "version": "v1", "updated": "2020-05-26T09:49:58.000Z" } ], "analyses": { "subjects": [ "49J53", "47H04", "54H25" ], "keywords": [ "fréchet spaces", "classical inverse function theorem", "general surjectivity result", "tame estimates", "variational analysis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }