{ "id": "2005.12084", "version": "v1", "published": "2020-05-25T12:53:18.000Z", "updated": "2020-05-25T12:53:18.000Z", "title": "On the $p$-divisibility of class numbers of an infinite family of imaginary quadratic fields $\\mathbb{Q} (\\sqrt{d})$ and $\\mathbb{Q} (\\sqrt{d+1}).$", "authors": [ "Pasupulati Sunil Kumar", "Srilakshmi Krishnamoorthy" ], "categories": [ "math.NT" ], "abstract": "For any odd prime $p,$ we construct an infinite family of pairs of imaginary quadratic fields $\\mathbb{Q}(\\sqrt{d}),\\mathbb{Q}(\\sqrt{d+1})$ whose class numbers are both divisible by $p.$ One of our theorems settles Iizuka's conjecture for the case $n=1$ and $p >2.$", "revisions": [ { "version": "v1", "updated": "2020-05-25T12:53:18.000Z" } ], "analyses": { "subjects": [ "11R29", "11R11" ], "keywords": [ "imaginary quadratic fields", "class numbers", "infinite family", "theorems settles iizukas conjecture", "divisibility" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }