{ "id": "2005.11835", "version": "v1", "published": "2020-05-24T20:21:35.000Z", "updated": "2020-05-24T20:21:35.000Z", "title": "Average Bateman--Horn for Kummer polynomials", "authors": [ "Francesca Balestrieri", "Nick Rome" ], "comment": "25 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "For any $r \\in \\mathbb{N}$ and almost all $k \\in \\mathbb{N}$, we show that the polynomial $f(n) = n^r + k$ takes infinitely many prime values. As a consequence, we deduce statements concerning variants of the Hasse principle and of the integral Hasse principle for certain open varieties defined by equations of the form $N_{K/\\mathbb{Q}}(\\mathbf{z}) = t^r +k \\neq 0$ where $K/\\mathbb{Q}$ is a quadratic extension. A key ingredient in our proof is a new large sieve inequality for Dirichlet characters of exact order $r$.", "revisions": [ { "version": "v1", "updated": "2020-05-24T20:21:35.000Z" } ], "analyses": { "subjects": [ "11N32", "14G05", "11D85" ], "keywords": [ "kummer polynomials", "average bateman-horn", "integral hasse principle", "large sieve inequality", "deduce statements concerning variants" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }