{ "id": "2005.11536", "version": "v1", "published": "2020-05-23T13:38:43.000Z", "updated": "2020-05-23T13:38:43.000Z", "title": "Gelfand-Kirillov dimensions of simple highest weight modules for types BCD", "authors": [ "Zhanqiang Bai", "Xun Xie" ], "comment": "25 pages. Comment welcome", "categories": [ "math.RT", "math.CO" ], "abstract": "By using the Lusztig's $ \\mathbf{a} $-function, we give a combinatorial algorithm for Gelfand-Kirillov dimensions of simple highest weight modules of Lie algebras $ \\mathfrak{sp}_{2n} $, $ \\mathfrak{so}_{2n} $ and $ \\mathfrak{so}_{2n+1} $ in terms of their highest weights. Then we determine the associated varieties of highest weight Harish-Chandra modules of Lie groups $ Sp(2n,\\mathbb{R}) $, $ SO^*(2n) $, $ SO(2, 2n-1) $ and $ SO(2,2n-2) $ by computing their Gelfand-Kirillov dimensions.", "revisions": [ { "version": "v1", "updated": "2020-05-23T13:38:43.000Z" } ], "analyses": { "subjects": [ "22E47", "17B10", "20C08" ], "keywords": [ "simple highest weight modules", "gelfand-kirillov dimensions", "types bcd", "highest weight harish-chandra modules", "lie algebras" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }