{ "id": "2005.11230", "version": "v1", "published": "2020-05-22T15:07:31.000Z", "updated": "2020-05-22T15:07:31.000Z", "title": "$Γ$-supercyclicity of families of translates in weighted $L^p$-spaces on locally compact groups", "authors": [ "Arafat Abbar", "Yulia Kuznetsova" ], "categories": [ "math.FA", "math.DS" ], "abstract": "Let $\\omega$ be a weight function defined on a locally compact group $G$, $1\\le p<+\\infty$, $S\\subset G$ and let us assume that for any $s\\in S$, the left translation operator $T_s$ is continuous from the weighted $L^p$-space $L^p(G,\\omega)$ into itself. For a given set $\\Gamma\\subset\\mathbb{C}$, a vector $f\\in L^p(G,\\omega)$ is said to be $(\\Gamma,S)$-dense if the set $\\{ \\lambda T_sf:\\, \\lambda\\in \\Gamma, \\,s\\in S\\}$ is dense in $L^p(G,\\omega)$. In this paper, we characterize the existence of $(\\Gamma,S)$-dense vectors in $L^p(G,\\omega)$ in terms of the weight and the set $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2020-05-22T15:07:31.000Z" } ], "analyses": { "subjects": [ "47A16", "43A15", "37C85" ], "keywords": [ "locally compact group", "translates", "supercyclicity", "left translation operator", "weight function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }