{ "id": "2005.10941", "version": "v1", "published": "2020-05-21T23:30:41.000Z", "updated": "2020-05-21T23:30:41.000Z", "title": "Improved regularity for the $p$-Poisson equation", "authors": [ "Edgard A. Pimentel", "Giane C. Rampasso", "Makson S. Santos" ], "journal": "Nonlinearity, 33, 3050-3061,2020", "doi": "10.1088/1361-6544/ab7d21", "categories": [ "math.AP" ], "abstract": "In this paper we produce new, optimal, regularity results for the solutions to $p$-Poisson equations. We argue through a delicate approximation method, under a smallness regime for the exponent $p$, that imports information from a limiting profile driven by the Laplace operator. Our arguments contain a novelty of technical interest, namely a sequential stability result; it connects the solutions to $p$-Poisson equations with harmonic functions, yielding improved regularity for the former. Our findings relate a smallness regime with improved $\\mathcal{C}^{1,1-}$-estimates in the presence of $L^\\infty$-source terms.", "revisions": [ { "version": "v1", "updated": "2020-05-21T23:30:41.000Z" } ], "analyses": { "subjects": [ "35B65", "35J60", "35J70", "49N60", "49J45" ], "keywords": [ "poisson equation", "smallness regime", "delicate approximation method", "sequential stability result", "regularity results" ], "tags": [ "journal article" ], "publication": { "publisher": "IOP" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }