{ "id": "2005.10909", "version": "v1", "published": "2020-05-21T21:13:14.000Z", "updated": "2020-05-21T21:13:14.000Z", "title": "Integration operators in average radial integrability spaces of analytic functions", "authors": [ "Tanausú Aguilar-Hernández", "Manuel D. Contreras", "Luis Rodríguez-Piazza" ], "categories": [ "math.FA" ], "abstract": "In this paper we characterize the boundedness, compactness, and weak compactness of the integration operators \\begin{align*} T_g (f)(z)=\\int_{0}^{z} f(w)g'(w)\\ dw \\end{align*} acting on the average radial integrability spaces $RM(p,q)$. For these purposes, we develop different tools such as a description of the bidual of $RM(p,0)$ and estimates of the norm of these spaces using the derivative of the functions, a family of results that we call Littlewood-Paley type inequalities.", "revisions": [ { "version": "v1", "updated": "2020-05-21T21:13:14.000Z" } ], "analyses": { "subjects": [ "30H20", "47B33", "47D06", "46E15", "47G10" ], "keywords": [ "average radial integrability spaces", "integration operators", "analytic functions", "littlewood-paley type inequalities", "weak compactness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }