{ "id": "2005.10887", "version": "v1", "published": "2020-05-21T20:22:17.000Z", "updated": "2020-05-21T20:22:17.000Z", "title": "On the number of frequency hypercubes $F^n(4;2,2)$", "authors": [ "Minjia Shi", "Shukai Wang", "Xiaoxiao Li", "Denis S. Krotov" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "A frequency $n$-cube $F^n(4;2,2)$ is an $n$-dimensional $4\\times\\cdots\\times 4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $F^4(4;2,2)$, find a testing set of size $25$ for $F^3(4;2,2)$, and derive an upper bound on the number of $F^n(4;2,2)$. Additionally, for any $n$ greater than $2$, we construct an $F^n(4;2,2)$ that cannot be refined to a latin hypercube, while each of its sub-$F^{n-1}(4;2,2)$ can. Keywords: frequency hypercube, frequency square, latin hypercube, testing set, MDS code", "revisions": [ { "version": "v1", "updated": "2020-05-21T20:22:17.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "frequency hypercube", "latin hypercube", "testing set", "line contains", "mds code" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }