{ "id": "2005.10809", "version": "v1", "published": "2020-05-21T17:44:29.000Z", "updated": "2020-05-21T17:44:29.000Z", "title": "Sums of Finite Sets of Integers, II", "authors": [ "Melvyn B. Nathanson" ], "comment": "8 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $\\mathcal{A}$ be a finite set of integers, and let $h\\mathcal{A}$ denote the $h$-fold sumset of $\\mathcal{A}$. Let $(h\\mathcal{A})^{(t)}$ be subset of $h\\mathcal{A}$ consisting of all integers that have at least $t$ representations as a sum of $h$ elements of $\\mathcal{A}$. The structure of the set $(h\\mathcal{A})^{(t)}$ is completely determined for all $h \\geq h_t$.", "revisions": [ { "version": "v1", "updated": "2020-05-21T17:44:29.000Z" } ], "analyses": { "subjects": [ "11B13", "11B34", "11B75", "11D07" ], "keywords": [ "finite set", "fold sumset", "representations" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }