{ "id": "2005.10609", "version": "v1", "published": "2020-05-21T12:39:29.000Z", "updated": "2020-05-21T12:39:29.000Z", "title": "On the Northcott property and local degrees", "authors": [ "Sara Checcoli", "Arno Fehm" ], "categories": [ "math.NT" ], "abstract": "We construct infinite Galois extensions $K$ of $\\mathbb{Q}$ that satisfy the Northcott property on elements of small height, and where this property can be deduced solely from the splitting behavior of prime numbers in $K$. We also give examples of Galois extensions of $\\mathbb{Q}$ which have finite local degree at all prime numbers and do not satisfy the Northcott property.", "revisions": [ { "version": "v1", "updated": "2020-05-21T12:39:29.000Z" } ], "analyses": { "subjects": [ "11G50", "12E30", "11R04", "12F05" ], "keywords": [ "northcott property", "construct infinite galois extensions", "prime numbers", "finite local degree", "small height" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }