{ "id": "2005.09809", "version": "v1", "published": "2020-05-20T01:06:57.000Z", "updated": "2020-05-20T01:06:57.000Z", "title": "A Semicircle Law for Derivatives of Random Polynomials", "authors": [ "Jeremy G. Hoskins", "Stefan Steinerberger" ], "categories": [ "math.PR", "math.CA" ], "abstract": "Let $x_1, \\dots, x_n$ be $n$ independent and identically distributed random variables with mean zero, unit variance, and finite moments of all remaining orders. We study the random polynomial $p_n$ having roots at $x_1, \\dots, x_n$. We prove that for $\\ell \\in \\mathbb{N}$ fixed as $n \\rightarrow \\infty$, the $(n-\\ell)-$th derivative of $p_n^{}$ behaves like a Hermite polynomial: for $x$ in a compact interval,$${n^{\\ell/2}} \\frac{\\ell!}{n!} \\cdot p_n^{(n-\\ell)}\\left( \\frac{x}{\\sqrt{n}}\\right) \\rightarrow He_{\\ell}(x + \\gamma_n),$$ where $He_{\\ell}$ is the $\\ell-$th probabilists' Hermite polynomial and $\\gamma_n$ is a random variable converging to the standard $\\mathcal{N}(0,1)$ Gaussian as $n \\rightarrow \\infty$. Thus, there is a universality phenomenon when differentiating a random polynomial many times: the remaining roots follow a Wigner semicircle distribution.", "revisions": [ { "version": "v1", "updated": "2020-05-20T01:06:57.000Z" } ], "analyses": { "keywords": [ "random polynomial", "semicircle law", "hermite polynomial", "wigner semicircle distribution", "derivative" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }