{ "id": "2005.09590", "version": "v1", "published": "2020-05-19T17:13:35.000Z", "updated": "2020-05-19T17:13:35.000Z", "title": "$α$, $β$-expansions of the Riordan matrices of the associated subgroup", "authors": [ "E. Burlachenko" ], "categories": [ "math.NT" ], "abstract": "We consider the group of the matrices $\\left( 1,g\\left( x \\right) \\right)$ isomorphic to the group of formal power series $g\\left( x \\right)=x+{{g}_{2}}{{x}^{2}}+...$ under composition: $\\left( 1,{{g}_{2}}\\left( x \\right) \\right)\\left( 1,{{g}_{1}}\\left( x \\right) \\right)=\\left( 1,{{g}_{1}}\\left( {{g}_{2}}\\left( x \\right) \\right) \\right)$. Denote $P_{k}^{\\alpha }=\\left( 1,x{{\\left( 1-k\\alpha {{x}^{k}} \\right)}^{{-1}/{k}\\;}} \\right)$. Matrix $\\left( 1,g\\left( x \\right) \\right)$is decomposed into an infinite product of the matrices $P_{k}^{\\alpha }$ with suitable exponents in two ways: to left-handed and right-handed products with respect to the matrix $P_{1}^{{{\\alpha }_{1}}={{\\beta }_{1}}}$: $\\left( 1,g\\left( x \\right) \\right)=...P_{k}^{{{\\alpha }_{k}}}...P_{2}^{{{\\alpha }_{2}}}P_{1}^{{{\\alpha }_{1}}}=P_{1}^{{{\\beta }_{1}}}P_{2}^{{{\\beta }_{2}}}...P_{k}^{{{\\beta }_{k}}}...$. We obtain two formulas expressing the coefficients of the series ${{\\left( {g\\left( x \\right)}/{x}\\; \\right)}^{z}}$ in terms of the expansion coefficients ${{\\alpha }_{i}}$, ${{\\beta }_{i}}$ and introduce two one-parameter families of series $g_{\\alpha }^{\\left( t \\right)}\\left( x \\right)$ and $g_{\\beta }^{\\left( t \\right)}\\left( x \\right)$ associated with these expansions.", "revisions": [ { "version": "v1", "updated": "2020-05-19T17:13:35.000Z" } ], "analyses": { "keywords": [ "riordan matrices", "associated subgroup", "formal power series", "infinite product", "expansion coefficients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }