{ "id": "2005.08885", "version": "v1", "published": "2020-05-18T16:56:06.000Z", "updated": "2020-05-18T16:56:06.000Z", "title": "Lacunary polynomials in $L^1$: geometry of the unit sphere", "authors": [ "Konstantin M. Dyakonov" ], "comment": "20 pages", "categories": [ "math.FA", "math.CA", "math.CV" ], "abstract": "Let $\\Lambda$ be a finite set of nonnegative integers, and let $\\mathcal P(\\Lambda)$ be the linear hull of the monomials $z^k$ with $k\\in\\Lambda$, viewed as a subspace of $L^1$ on the unit circle. We characterize the extreme and exposed points of the unit ball in $\\mathcal P(\\Lambda)$.", "revisions": [ { "version": "v1", "updated": "2020-05-18T16:56:06.000Z" } ], "analyses": { "subjects": [ "30C10", "30H10", "42A05", "46A55" ], "keywords": [ "unit sphere", "lacunary polynomials", "finite set", "linear hull", "unit circle" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }