{ "id": "2005.06905", "version": "v1", "published": "2020-05-14T12:12:57.000Z", "updated": "2020-05-14T12:12:57.000Z", "title": "Optimal Berry-Esséen bound for Maximum likelihood estimation of the drift parameter in $ α$-Brownian bridge", "authors": [ "Khalifa Es-Sebaiy", "Jabrane Moustaaid" ], "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "Let $T>0,\\alpha>\\frac12$. In the present paper we consider the $\\alpha$-Brownian bridge defined as $dX_t=-\\alpha\\frac{X_t}{T-t}dt+dW_t,~ 0\\leq t< T$, where $W$ is a standard Brownian motion. We investigate the optimal rate of convergence to normality of the maximum likelihood estimator (MLE) for the parameter $ \\alpha $ based on the continuous observation $\\{X_s,0\\leq s\\leq t\\}$ as $t\\uparrow T$. We prove that an optimal rate of Kolmogorov distance for central limit theorem on the MLE is given by $\\frac{1}{\\sqrt{\\vert\\log(T-t)\\vert}}$, as $t\\uparrow T$. First we compute an upper bound and then find a lower bound with the same speed using Corollary 1 and Corollary 2 of \\cite{kp-JVA}, respectively.", "revisions": [ { "version": "v1", "updated": "2020-05-14T12:12:57.000Z" } ], "analyses": { "keywords": [ "maximum likelihood estimation", "optimal berry-esséen bound", "brownian bridge", "drift parameter", "optimal rate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }