{ "id": "2005.06714", "version": "v1", "published": "2020-05-14T04:03:04.000Z", "updated": "2020-05-14T04:03:04.000Z", "title": "A Semilinear Inverse Problem For The Fractional Magnetic Laplacian", "authors": [ "Li Li" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We study a class of fractional semilinear elliptic equations and formulate the corresponding Calder\\'on problem. We determine the nonlinearity from the exterior partial measurements of the Dirichlet-to-Neumann map by using first order linearization and the Runge approximation property.", "revisions": [ { "version": "v1", "updated": "2020-05-14T04:03:04.000Z" } ], "analyses": { "keywords": [ "fractional magnetic laplacian", "semilinear inverse problem", "fractional semilinear elliptic equations", "first order linearization", "runge approximation property" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }