{ "id": "2005.06309", "version": "v1", "published": "2020-05-13T13:31:41.000Z", "updated": "2020-05-13T13:31:41.000Z", "title": "Nonsingular Bernoulli actions of arbitrary Krieger type", "authors": [ "Tey Berendschot", "Stefaan Vaes" ], "categories": [ "math.DS", "math.GR", "math.OA" ], "abstract": "We prove that every infinite amenable group admits Bernoulli actions of any possible Krieger type, including type $II_\\infty$ and type $III_0$. We obtain this result as a consequence of general results on the ergodicity and Krieger type of nonsingular Bernoulli actions $G \\curvearrowright \\prod_{g \\in G} (X_0,\\mu_g)$ with arbitrary base space $X_0$, both for amenable and for nonamenable groups. Earlier work focused on two point base spaces $X_0 = \\{0,1\\}$, where type II$_\\infty$ was proven not to occur.", "revisions": [ { "version": "v1", "updated": "2020-05-13T13:31:41.000Z" } ], "analyses": { "keywords": [ "nonsingular bernoulli actions", "arbitrary krieger type", "amenable group admits bernoulli actions", "infinite amenable group admits bernoulli", "base space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }