{ "id": "2005.05667", "version": "v1", "published": "2020-05-12T10:22:25.000Z", "updated": "2020-05-12T10:22:25.000Z", "title": "QCH mappings between unit ball and domain with $C^{1,α}$ boundary", "authors": [ "Anton Gjokaj", "David Kalaj" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "We prove the following. If $f$ is a harmonic quasiconformal mapping between the unit ball in $\\mathbb{R}^n$ and a spatial domain with $C^{1,\\alpha}$ boundary, then $f$ is Lipschitz continuous in $B$. This generalizes some known results for $n=2$ and improves some others in higher dimensional case.", "revisions": [ { "version": "v1", "updated": "2020-05-12T10:22:25.000Z" } ], "analyses": { "keywords": [ "unit ball", "qch mappings", "higher dimensional case", "spatial domain", "generalizes" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }