{ "id": "2005.05208", "version": "v1", "published": "2020-05-11T15:53:11.000Z", "updated": "2020-05-11T15:53:11.000Z", "title": "Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator", "authors": [ "Andreas Anastasiou", "Robert E. Gaunt" ], "comment": "31 pages, 1 figure", "categories": [ "math.ST", "stat.TH" ], "abstract": "We obtain explicit Wasserstein distance error bounds between the distribution of the multi-parameter MLE and the multivariate normal distribution. Our general bounds are given for possibly high-dimensional, independent and identically distributed random vectors. Our general bounds are of the optimal $\\mathcal{O}(n^{-1/2})$ order. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the multivariate normal distribution under non-canonical parametrisation.", "revisions": [ { "version": "v1", "updated": "2020-05-11T15:53:11.000Z" } ], "analyses": { "subjects": [ "60F05", "62E17", "62F10", "62F12" ], "keywords": [ "multivariate normal approximation", "maximum likelihood estimator", "multivariate normal distribution", "general bounds", "explicit wasserstein distance error bounds" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }