{ "id": "2005.04947", "version": "v1", "published": "2020-05-11T09:18:02.000Z", "updated": "2020-05-11T09:18:02.000Z", "title": "Hausdorff dimension and projections related to intersections", "authors": [ "Pertti Mattila" ], "categories": [ "math.CA" ], "abstract": "For $S_g(x,y)=x-g(y), x,y\\in\\mathbb{R}^n, g\\in O(n),$ we investigate the Lebesgue measure and Hausdorff dimension of $S_g(A)$ given the dimension of $A$, both for general Borel subsets of $\\mathbb{R}^{2n}$ and for product sets.", "revisions": [ { "version": "v1", "updated": "2020-05-11T09:18:02.000Z" } ], "analyses": { "subjects": [ "28A75" ], "keywords": [ "hausdorff dimension", "projections", "intersections", "general borel subsets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }