{ "id": "2005.04631", "version": "v1", "published": "2020-05-10T11:17:59.000Z", "updated": "2020-05-10T11:17:59.000Z", "title": "Weak convergence of Euler scheme for SDEs with singular drift", "authors": [ "Yongqiang Suo", "Chenggui Yuan", "Shao-Qin Zhang" ], "comment": "12 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we investigate the weak convergence rate of Euler-Maruyama's approximation for stochastic differential equations with irregular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piecewise continuous or in fractional Sobolev space.", "revisions": [ { "version": "v1", "updated": "2020-05-10T11:17:59.000Z" } ], "analyses": { "subjects": [ "60H10", "34K26", "65C30" ], "keywords": [ "euler scheme", "singular drift", "explicit weak convergence rates", "fractional sobolev space", "stochastic differential equations" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }