{ "id": "2005.04608", "version": "v1", "published": "2020-05-10T09:25:32.000Z", "updated": "2020-05-10T09:25:32.000Z", "title": "Holder continuity of weak solutions of p-Laplacian PDE's with VMO coefficients", "authors": [ "C. S. Goodtich", "m. A. Ragusa" ], "comment": "Nonlinear Analysis", "doi": "10.1016/j.na.2019.03.015", "categories": [ "math.AP" ], "abstract": "We consider solutions $u\\in W^{1,p}\\big(\\Omega;\\mathbb{R}^{N}\\big)$ of the $p$-Laplacian PDE \\begin{equation} \\nabla\\cdot\\big(a(x)|Du|^{p-2}Du\\big)=0,\\notag \\end{equation} for $x\\in\\Omega\\subseteq\\mathbb{R}^{n}$, where $\\Omega$ is open and bounded. More generally, we consider solutions of the elliptic system \\begin{equation} \\nabla\\cdot\\left(a(x)g'\\big(a(x)|Du|\\big)\\frac{Du}{|Du|}\\right)=0\\text{, }x\\in\\Omega\\notag \\end{equation} as well as minimizers of the functional \\begin{equation} \\int_{\\Omega}g\\big(a(x)|Du|\\big)\\ dx.\\notag \\end{equation} In each case, the coefficient map $a\\ : \\ \\Omega\\rightarrow\\mathbb{R}$ is only assumed to be of class $VMO(\\Omega)\\cap L^{\\infty}(\\Omega)$, which means that it may be discontinuous. Without assuming that $x\\mapsto a(x)$ has any weak differentiability, we show that $u\\in\\mathscr{C}_{\\text{loc}}^{0,\\alpha}(\\Omega)$ for each $0<\\alpha<1$. The preceding results are, in fact, a corollary of a much more general result, which applies to the functional \\begin{equation} \\int_{\\Omega}f\\big(x,u,Du\\big)\\ dx\\notag \\end{equation} in case $f$ is only asymptotically convex.", "revisions": [ { "version": "v1", "updated": "2020-05-10T09:25:32.000Z" } ], "analyses": { "subjects": [ "35B65", "49N60", "46E35" ], "keywords": [ "p-laplacian pdes", "holder continuity", "weak solutions", "vmo coefficients", "functional" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }