{ "id": "2005.04524", "version": "v1", "published": "2020-05-09T22:35:25.000Z", "updated": "2020-05-09T22:35:25.000Z", "title": "The Bramson correction for Fisher--KPP equations with nonlocal diffusion", "authors": [ "Cole Graham" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "We establish the logarithmic Bramson correction to the position of solutions to the Fisher--KPP equation with nonlocal diffusion. Solutions with step-like initial data typically resemble a front at position $c_{*} t - \\frac{3}{2 \\lambda_{*}} \\log t + \\mathcal{O}(1)$ for explicit constants $c_{*}$ and $\\lambda_{*}$. However, certain singular diffusions exhibit more exotic behavior.", "revisions": [ { "version": "v1", "updated": "2020-05-09T22:35:25.000Z" } ], "analyses": { "subjects": [ "35B40", "35K57", "60J80" ], "keywords": [ "nonlocal diffusion", "fisher-kpp equation", "initial data typically resemble", "logarithmic bramson correction", "step-like initial data" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }