{ "id": "2005.04505", "version": "v1", "published": "2020-05-09T19:55:07.000Z", "updated": "2020-05-09T19:55:07.000Z", "title": "Equisingularity of families of functions on isolated determinantal singularities", "authors": [ "Rafaela S. Carvalho", "Juan J. Nuño-Ballesteros", "Bruna Oréfice-Okamoto", "João N. Tomazella" ], "categories": [ "math.AG" ], "abstract": "We study the equisingularity of a family of function germs $\\{f_t\\colon(X_t,0)\\to (\\mathbb{C},0)\\}$, where $(X_t,0)$ are $d$-dimensional isolated determinantal singularities. We define the $(d-1)$th polar multiplicity of the fibers $X_t\\cap f_t^{-1}(0)$ and we show how the constancy of the polar multiplicities is related to the constancy of the Milnor number of $f_t$ and the Whitney equisingularity of the family.", "revisions": [ { "version": "v1", "updated": "2020-05-09T19:55:07.000Z" } ], "analyses": { "subjects": [ "32S15", "32S30", "58K60" ], "keywords": [ "dimensional isolated determinantal singularities", "th polar multiplicity", "whitney equisingularity", "milnor number", "function germs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }