{ "id": "2005.04406", "version": "v1", "published": "2020-05-09T09:50:23.000Z", "updated": "2020-05-09T09:50:23.000Z", "title": "Invariants of limit key polynomials", "authors": [ "Maria Alberich-Carramiñana", "Alberto F. Boix", "Julio Fernández", "Jordi Guàrdia", "Enric Nart", "Joaquim Roé" ], "categories": [ "math.AG" ], "abstract": "Let $\\nu$ be a valuation of arbitrary rank on the polynomial ring $K[x]$ with coefficients in a field $K$. We prove comparison theorems between MacLane-Vaqui\\'e key polynomials for valuations $\\mu\\le\\nu$ and abstract key polynomials for $\\nu$. Also, some results on invariants attached to limit key polynomials are obtained. In particular, if $\\operatorname{char}(K)=0$ we show that all limit key polynomials of unbounded continuous MacLane chains have numerical character equal to one.", "revisions": [ { "version": "v1", "updated": "2020-05-09T09:50:23.000Z" } ], "analyses": { "keywords": [ "polynomial", "invariants", "arbitrary rank", "comparison theorems", "unbounded continuous maclane chains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }