{ "id": "2005.04333", "version": "v1", "published": "2020-05-09T01:14:42.000Z", "updated": "2020-05-09T01:14:42.000Z", "title": "Monopoles and Landau-Ginzburg Models II: Floer Homology", "authors": [ "Donghao Wang" ], "comment": "143 pages, 2 figures", "categories": [ "math.GT" ], "abstract": "This is the second paper of this series. We define the monopole Floer homology for 3-manifolds with torus boundary, extending the work of Kronheimer-Mrowka for closed 3-manifolds. The Euler characteristic of this Floer homology recovers the Milnor torsion invariant of the 3-manifold by a theorem of Meng-Taubes.", "revisions": [ { "version": "v1", "updated": "2020-05-09T01:14:42.000Z" } ], "analyses": { "subjects": [ "57R58", "57M27", "53D40" ], "keywords": [ "landau-ginzburg models", "milnor torsion invariant", "monopole floer homology", "euler characteristic", "second paper" ], "note": { "typesetting": "TeX", "pages": 143, "language": "en", "license": "arXiv", "status": "editable" } } }