{ "id": "2005.04113", "version": "v1", "published": "2020-05-08T15:38:17.000Z", "updated": "2020-05-08T15:38:17.000Z", "title": "Surjectivity of Convolution Operators on Noncompact Symmetric Spaces", "authors": [ "Fulton Gonzalez", "Tomoyuki Kakehi", "Jue Wang" ], "categories": [ "math.FA", "math.RT" ], "abstract": "Let $\\mu$ be a $K$-invariant compactly supported distribution on a noncompact Riemannian symmetric space $X=G/K$. If the spherical Fourier transform $\\widetilde\\mu(\\lambda)$ is slowly decreasing, it is known that the right convolution operator $c_\\mu\\colon f\\mapsto f*\\mu$ maps $\\mathcal E(X)$ onto $\\mathcal E(X)$. In this paper, we prove the converse of this result. We also prove that $c_\\mu$ has a fundamental solution if and only if $\\widetilde\\mu(\\lambda)$ is slowly decreasing.", "revisions": [ { "version": "v1", "updated": "2020-05-08T15:38:17.000Z" } ], "analyses": { "keywords": [ "noncompact symmetric spaces", "surjectivity", "noncompact riemannian symmetric space", "right convolution operator", "spherical fourier transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }