{ "id": "2005.03821", "version": "v1", "published": "2020-05-08T02:10:01.000Z", "updated": "2020-05-08T02:10:01.000Z", "title": "Contractions, Cogenerators, and Weak Stability", "authors": [ "Robert E. O'Brien" ], "categories": [ "math.FA", "math.DS" ], "abstract": "A contraction semigroup T on a Hilbert space H and its cogenerator S define an algebra, the limit algebra - which determines the structure of the subspace of weakly Poisson recurrent vectors and gives a necessary and sufficient condition for T and S to be weakly stable equivalent.", "revisions": [ { "version": "v1", "updated": "2020-05-08T02:10:01.000Z" } ], "analyses": { "subjects": [ "47A20", "47A35" ], "keywords": [ "weak stability", "cogenerator", "weakly poisson recurrent vectors", "contraction semigroup", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }