{ "id": "2005.02907", "version": "v1", "published": "2020-05-06T15:30:31.000Z", "updated": "2020-05-06T15:30:31.000Z", "title": "Regular Turán numbers of complete bipartite graphs", "authors": [ "Michael Tait", "Craig Timmons" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $\\mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of $C_4$, $K_{2,t}$, $K_{3,3}$ or $K_{s,t}$ when $t>s!$.", "revisions": [ { "version": "v1", "updated": "2020-05-06T15:30:31.000Z" } ], "analyses": { "keywords": [ "regular turán numbers", "complete bipartite graphs", "maximum number", "vertex graph", "lower bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }