{ "id": "2005.02556", "version": "v1", "published": "2020-05-06T01:57:38.000Z", "updated": "2020-05-06T01:57:38.000Z", "title": "Harmonic Functions and Riesz-Newtonian Potentials on 'Noisy' or Random Domains:Stochastic Extensions of Some Classical Theorems and Estimates", "authors": [ "Steven D Miller" ], "categories": [ "math-ph", "math.MP", "math.PR" ], "abstract": "Let $\\psi:{\\mathcal{D}}\\rightarrow{\\mathrm{R}}$ be a harmonic function such that $\\Delta \\psi(x)=0$ for all $x\\in\\mathcal{D}\\subset{\\mathrm{R}}^{n}$. There are then many well-established classical results:the Dirichlet problem and Poisson formula, Harnack inequality, the Maximum Principle, the Mean Value Property etc. Here, a 'noisy' or random domain is one for which there also exists a classical scalar Gaussian random field (GRF) ${\\mathrm{I\\!F}(x)}$ defined for all $x\\in{\\mathcal{D}}$ or $x\\in\\partial {\\mathcal{D}}$ with respect to a probability space $[\\Omega,\\mathscr{F},{\\mathsf{P}}]$. The GRF has vanishing mean value $\\mathsf{E}[\\![\\mathrm{I\\!F}(x)]\\!] = 0$ and a regulated covariance ${{\\mathsf{E}}}[\\![{{\\mathrm{I\\!F}}(x)} \\otimes {{\\mathrm{I\\!F}}(y)}]\\!] = \\alpha K(x,y;\\xi)$ for all $(x,y)\\in{\\mathcal{D}}$, with correlation length $\\xi$ and ${{\\mathsf{E}}}[\\![{{\\mathrm{I\\!F}}(x)} \\otimes {{\\mathrm{I\\!F}}}(x)]\\!] = \\alpha<\\infty$. The gradient $\\nabla{{\\mathrm{I\\!F}}(x)}$ and integrals $\\int_{{\\mathcal{D}}}{\\mathrm{I\\!F}}(x) d\\mu(x)$ also exist on ${\\mathcal{D}}$. Harmonic functions and potentials can become randomly perturbed GRFs of the form $\\overline{\\psi(x)}=\\psi(x)+\\lambda{{\\mathrm{I\\!F}}}(x)$. Physically, this scenario arises from noisy sources or random fluctuations in mass/charge density, noisy or random boundary/surface data; and introducing turbulence/randomness into smooth fluid flows, steady state diffusions or heat flow. This leads to stochastic modifications of classical theorems for randomly perturbed harmonic functions and Riesz and Newtonian potentials; and to stability estimates for the growth and decay of their volatility and moments.", "revisions": [ { "version": "v1", "updated": "2020-05-06T01:57:38.000Z" } ], "analyses": { "keywords": [ "harmonic function", "random domain", "classical theorems", "stochastic extensions", "riesz-newtonian potentials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }