{ "id": "2005.02393", "version": "v1", "published": "2020-05-05T16:56:09.000Z", "updated": "2020-05-05T16:56:09.000Z", "title": "Primes in arithmetic progressions and semidefinite programming", "authors": [ "Andrés Chirre", "Valdir José Pereira Júnior", "David de Laat" ], "comment": "10 pages, 4 ancillary files", "categories": [ "math.NT", "cs.NA", "math.CA", "math.NA" ], "abstract": "Assuming the generalized Riemann hypothesis, we give asymptotic bounds on the size of intervals that contain primes from a given arithmetic progression using the approach developed by Carneiro, Milinovich and Soundararajan [Comment. Math. Helv. 94, no. 3 (2019)]. For this we extend the Guinand-Weil explicit formula over all Dirichlet characters modulo $q \\geq 3$, and we reduce the associated extremal problems to convex optimization problems that can be solved numerically via semidefinite programming.", "revisions": [ { "version": "v1", "updated": "2020-05-05T16:56:09.000Z" } ], "analyses": { "subjects": [ "11N05", "11N13", "90C22" ], "keywords": [ "arithmetic progression", "semidefinite programming", "convex optimization problems", "dirichlet characters modulo", "guinand-weil explicit formula" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }