{ "id": "2005.02276", "version": "v1", "published": "2020-05-05T15:15:16.000Z", "updated": "2020-05-05T15:15:16.000Z", "title": "On Absolute Continuity and Singularity of Multidimensional Diffusions", "authors": [ "David Criens" ], "categories": [ "math.PR" ], "abstract": "Consider two laws \\(P\\) and \\(Q\\) of multidimensional possibly explosive diffusions with common diffusion coefficient \\(\\mathfrak{a}\\) and drift coefficients \\(\\mathfrak{b}\\) and \\(\\mathfrak{b} + \\mathfrak{a} \\mathfrak{c}\\), respectively, and the law \\(P^\\circ\\) of an auxiliary diffusion with diffusion coefficient \\(\\langle \\mathfrak{c},\\mathfrak{a}\\mathfrak{c}\\rangle^{-1}\\mathfrak{a}\\) and drift coefficient \\(\\langle \\mathfrak{c}, \\mathfrak{a}\\mathfrak{c}\\rangle^{-1}\\mathfrak{b}\\). We show that \\(P \\ll Q\\) if and only if the auxiliary diffusion \\(P^\\circ\\) explodes almost surely and that \\(P\\perp Q\\) if and only if the auxiliary diffusion \\(P^\\circ\\) almost surely does not explode. As applications we derive a Khasminskii-type integral test for absolute continuity and singularity, an integral test for explosion of time-changed Brownian motion, and we discuss applications to mathematical finance.", "revisions": [ { "version": "v1", "updated": "2020-05-05T15:15:16.000Z" } ], "analyses": { "subjects": [ "60J60", "60J35", "60G44", "60H10" ], "keywords": [ "absolute continuity", "multidimensional diffusions", "auxiliary diffusion", "singularity", "drift coefficient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }