{ "id": "2005.02030", "version": "v1", "published": "2020-05-05T09:54:49.000Z", "updated": "2020-05-05T09:54:49.000Z", "title": "The weak lower density condition and uniform rectifiability", "authors": [ "Jonas Azzam", "Matthew Hyde" ], "comment": "29 pages", "categories": [ "math.CA", "math.MG" ], "abstract": "We show that an Ahlfors $d$-regular set $E$ in $\\mathbb{R}^{n}$ is uniformly rectifiable if the set of pairs $(x,r)\\in E\\times (0,\\infty)$ for which there exists $y \\in B(x,r)$ and $00$. To prove this, we generalize a result of Schul by proving, if $X$ is a $C$-doubling metric space, $\\varepsilon,\\rho\\in (0,1)$, $A>1$, and $X_{n}$ is a sequence of maximal $2^{-n}$-separated sets in $X$, and $\\mathscr{B}=\\{B(x,2^{-n}):x\\in X_{n},n\\in \\mathbb{N}\\}$, then \\[ \\sum \\left\\{r_{B}^{s}: B\\in \\mathscr{B}, \\frac{\\mathscr{H}^{s}_{\\rho r_{B}}(X\\cap AB)}{(2r_{B})^{s}}>1+\\varepsilon\\right\\} \\lesssim_{C,A,\\varepsilon,\\rho,s} \\mathscr{H}^{s}(X). \\] This is a quantitative version of the classical result that for a metric space $X$ of finite $s$-dimensional Hausdorff measure, the upper $s$-dimensional densities are at most $1$ $\\mathscr{H}^{s}$-almost everywhere.", "revisions": [ { "version": "v1", "updated": "2020-05-05T09:54:49.000Z" } ], "analyses": { "subjects": [ "28A75", "28A78", "28A12" ], "keywords": [ "weak lower density condition", "uniform rectifiability", "dimensional hausdorff measure", "carleson set", "dimensional densities" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }