{ "id": "2005.01915", "version": "v1", "published": "2020-05-05T02:18:56.000Z", "updated": "2020-05-05T02:18:56.000Z", "title": "On integral basis of pure number fields", "authors": [ "Anuj Jakhar", "Sudesh K. Khanduja", "Neeraj Sangwan" ], "categories": [ "math.NT" ], "abstract": "Let $K=\\mathbb{Q}(\\sqrt[n]{a})$ be an extension of degree $n$ of the field $\\Q$ of rational numbers, where the integer $a$ is such that for each prime $p$ dividing $n$ either $p\\nmid a$ or the highest power of $p$ dividing $a$ is coprime to $p$; this condition is clearly satisfied when $a, n$ are coprime or $a$ is squarefree. The present paper gives explicit construction of an integral basis of $K$ along with applications. This construction of an integral basis of $K$ extends a result proved in [J. Number Theory, {173} (2017), 129-146] regarding periodicity of integral bases of $\\mathbb{Q}(\\sqrt[n]{a})$ when $a$ is squarefree.", "revisions": [ { "version": "v1", "updated": "2020-05-05T02:18:56.000Z" } ], "analyses": { "subjects": [ "11R04", "11R29" ], "keywords": [ "integral basis", "pure number fields", "highest power", "explicit construction", "rational numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }