{ "id": "2005.01300", "version": "v1", "published": "2020-05-04T07:15:30.000Z", "updated": "2020-05-04T07:15:30.000Z", "title": "On the discriminant of pure number fields", "authors": [ "Anuj Jakhar", "Sudesh K. Khanduja", "Neeraj Sangwan" ], "categories": [ "math.NT" ], "abstract": "Let $K=\\mathbb{Q}(\\sqrt[n]{a})$ be an extension of degree $n$ of the field $\\Q$ of rational numbers, where the integer $a$ is such that for each prime $p$ dividing $n$ either $p\\nmid a$ or the highest power of $p$ dividing $a$ is coprime to $p$; this condition is clearly satisfied when $a, n$ are coprime or $a$ is squarefree. The paper contains an explicit formula for the discriminant of $K$ involving only the prime powers dividing $a,n$.", "revisions": [ { "version": "v1", "updated": "2020-05-04T07:15:30.000Z" } ], "analyses": { "subjects": [ "11R04", "11R29" ], "keywords": [ "pure number fields", "discriminant", "prime powers", "rational numbers", "highest power" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }