{ "id": "2005.00617", "version": "v1", "published": "2020-05-01T21:26:44.000Z", "updated": "2020-05-01T21:26:44.000Z", "title": "Strauss and Lions type theorems for the fractional Sobolev spaces with variable exponent and applications to nonlocal Kirchhoff-Choquard problem", "authors": [ "Sabri Bahrouni", "Hichem Ounaies" ], "categories": [ "math.AP" ], "abstract": "This paper deals with Strauss and Lions-type theorems for fractional Sobolev spaces with variable exponent $W^{s,p(.),\\tilde{p}(.,.)}(\\Omega)$, when $p$ and $\\tilde{p}$ satisfies some conditions. As application, we study the existence of solutions for a class of Kirchhoff-Choquard problem in $\\mathbb{R}^N$.", "revisions": [ { "version": "v1", "updated": "2020-05-01T21:26:44.000Z" } ], "analyses": { "keywords": [ "fractional sobolev spaces", "nonlocal kirchhoff-choquard problem", "lions type theorems", "variable exponent", "application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }